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Abstract Random graph models can help us assess the significance of the structural
properties of real complex systems. Given the value of a graph property and its value
in a randomized ensemble, we can determine whether the property is explained by
chance by comparing its real value to its value in the ensemble. The conclusions
drawn with this approach obviously depend on the choice of randomization. We
argue that keeping graphs in one connected piece, or component, is key for many
applications where complex graphs are assumed to be connected either by definition
(e.g. the Internet) or by construction (e.g. a crawled subset of the World-Wide
Web obtained only by following hyperlinks). Using an heuristic to quickly sample
the ensemble of small connected simple graphs with a fixed degree sequence,
we investigate the significance of the structural patterns found in real connected
graphs. We find that, in sparse networks, the connectedness constraint changes
degree correlations, the outcome of community detection with modularity, and the
predictions of percolation on the ensemble.

Putting measurements into context is a crucial part of any network analysis. Suppose
that we have some real network at our disposal and that we know the value of
some of its properties—say its level of transitivity or its homophily with respect
to some property [1]. It is clear that these values do not make much sense in and of
themselves. Knowing that a network G1 “has transitivity C,” tells us far less than
knowing that “network G1 is more transitive than network G2.” In the first instance,
we merely have an arbitrary number; it only begins to make sense once compared
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to other measurements, either implicitly (e.g., via a normalization) or explicitly, as
in the second instance.

Null modeling is a technique whereby we create an ensemble of graphs that
preserves some of the properties of the original network data, while randomizing the
others. Computing the expected value of a property for the graphs of this ensemble
gives a baseline against which to compare an original measurement. The baseline
can be used to formulate a statistical test telling us which properties of an input G

are “surprising” with respect to the model, and which are not. For example, if the
transitivity C(G) of a network takes roughly the same value under a null model that
preserves the degree sequence d(G) of the input G, then it is, as far as transitivity
is concerned, typical of graphs with this degree sequence. Conversely, if the value
of C(G) greatly differs in the randomized ensemble, then G is atypical: The degree
sequence d(G) does not explain C(G).

Similar inference can be made for any choice of null models and properties.
Hence the more models we have, the more we can control for various features of
real networks. Fixing only the number of vertices and edges leads to the classical
random graph model of Erdős–Rényi [2, 3]. Further constraining the ensemble to
graphs with a fixed degree distribution corresponds to generating graphs from the
well-known Configuration Model (CM) [4–6]. Notwithstanding sampling problems
[7], exponential random graphs [8] can be used to limit the ensemble to graphs with
precise patterns and correlation structure. A wealth of other models allow to control
for, e.g., arbitrary mesoscale patterns [9], degree correlations [10], or a centrality
structure [11, 12].

All the models above are defined in terms of simple local connection rules.
The main reason for this choice is that simple local rules usually lead to simple
sampling algorithms and make the models analytically tractable [7]. A less desirable
consequence of mathematical convenience, however, is that it dictates the models
we have. Relying only on convenient models can leave important blind spots in
our analyses, because unwieldy connection rules can—and do—lead to critically
different null models [13].

An important example of unwieldy constraint, which will be the focus of the
present paper, is connectedness. A few recent studies have shown that the connected
subsets of random graphs can have a significantly different structure than the entire
random graph itself [14–16]. Connectedness is, without a doubt, an important aspect
to control for in null models, since it is so frequently found in real systems. It
can arise for at least three different reasons. One, it may be a simple matter of
perspective: If a food web (or a power grid) is split into independent components,
then we are likely to consider them as separate food webs (or power grids) since
what occurs in one component does not affect the other. Two, global connectivity
may stem from the definition of the network: Such is the case of the Internet, which
is a unique, global, connected network of computers. Three, some networks can
never split into disconnected pieces because of the way they are sampled [17],
including, for example: subsets of the World Wide Web obtained by crawlers that do
not teleport [18], or social networks sampled by recursive nomination [19, 20]. If we
do not use an appropriate random graph ensemble as a null model in our analysis,
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we are likely to overestimate the significance of some results or miss other important
structural features.

The focus of our paper is twofold. First, we propose a simple heuristic to
generate samples from the connected Configuration Model (connected CM), the
natural null model for connected graphs with a fixed degree sequence. There are
already algorithms that solve related problems—see Sect. 1 for an overview—but
they are either inefficient or not adapted to the version of the problem we aim
to tackle. Our algorithm is described in Sect. 2 and made available online in a
reference implementation.1 Second, we use this algorithm to quantify the impact
of connectedness on applications that rely on comparison with random graphs, in
Sect. 3. We show that using the connected version of the CM can change degree
correlations, the outcome of community detection, and lead to qualitatively different
predictions of percolation on graphs.

1 Connected Configuration Model and Related Work

It is somewhat imprecise to speak of the connected configuration model (CM)
because there are, in fact, many versions of the classic configuration model [21].
In this paper, we will consider the so-called microcanonical variant, that assigns
an identical probability to all graphs that contain a single component and whose
nodes 1, . . . , N have degrees d = (d1, d2, . . . , dN), and zero probability to all other
graphs. Formally, if we denote by ΩN(d) the ensemble of connected graphs with
degree sequence d, the probability of observing any given graph G with degree
sequence d ′ is, under this model,

P(G) =
{

1
|ΩN(d ′)| if d(G) = d ′,
0 otherwise

(1)

where | · | denotes the cardinality of the ensemble. This definition of the connected
CM is known as microcanonical by opposition to the canonical definition where the
degree of nodes are fixed only on average, instead of exactly.

It turns out sampling that from this ensemble is much more challenging than
sampling from the equivalent ensemble without the connectedness constraint [21].
There are a few approaches that solve the problem in different ways.

A sampling algorithm for generic connected models was recently proposed by
Gray et al. [16]. Their idea is to first generate a (typically unconnected) initial
graph from the model without connectedness constraints. They then add arbitrary
links until the graph becomes connected, and they finally run a simple Monte-
Carlo Markov chain (MCMC) algorithm with a target distribution that is now the

1Available at https://gitlab.com/jhring/connected_cm.
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connected version of the model. This method unfortunately does not work when
the target model is the microcanonical connected CM. The input degree sequence
is modified when edges are added, and the resulting graphs therefore have zero
probability under the connected model, and the MCMC can never leave the initial
state, let alone approach a region of high probability.

Another recent algorithm proposed by Tishby et al. also makes use of the
unconnected version of the CM as its starting point [15]. This approach differs
from the previous one in what it does next. The idea, in this case, is to discard
the disconnected components of the initial graph and to keep the largest one,
which then constitutes a sample from the connected model. Tishby et al. show
that by engineering the parameters of the generating (unconnected) ensemble, one
can obtain the desired size and degree distribution for the large component, in
expectation. However, this approach does not control the degree sequence exactly,
and it is therefore again not applicable to the microcanonical CM.

The only method that specifically addresses the problem of sampling from
the microcanonical CM is an algorithm by Viger and Latapy [22, 23] and its
predecessor, proposed by Gkantsidis et al. [24]. Starting from an initial connected
configuration generated (for example an input graph or constructed with a graphical
test [25]), their algorithm proposes local randomizations that preserve connectivity
and the degree sequence (double edge-swaps [21]). Since certifying connectivity is
expensive, they only verify that the graph has remained connected every so often,
and backtrack when necessary. They show that a good choice of monitoring interval
can speed the computation up by a large constant factor [24].

2 Efficient Heuristic

Our algorithm is most closely related to the methods of Gkantsidist et al. [24] and
Viger and Latapy [23]. In fact, it makes use of the same set of basic operations, but
we swap their order to obtain a significant speed-up on smaller graphs such that we
can quickly sample millions of instances.

To generate a graph with sequence d, we proceed as follows. (see Algorithm 1).
We first use the Havel-Hakimi algorithm to create a graph with the appropriate
degree sequence [25, 26]. We then shuffle its edges by applying T double edge
swaps on random pairs of edges, where T is a tunable parameter. By construction,
these swaps preserve the degree sequence and can be shown to generate ergodic
and uniform chains over the set of graphs with a fixed degree sequence (with no
connectedness constraints) [21]. Note that we disallow self-loops parallel edges—
we are interested in the simple graph ensemble where these do not occur.

The innovation of our method lies in a final step where we connect our newly-
shuffled graph with double edge swaps that connect components. These edge
swaps are carried out with edges drawn uniformly at random within two different
components. The components are themselves selected at random, with probability
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proportional to the number of nodes they contain. The algorithm terminates as soon
as the graph becomes connected.

Algorithm 1 Connected configuration model
1: procedure CONNECTED_CM(DEG_SEQ)
2: G ← havelhakimi(DEGSEQ)

3: while swaps < T do
4: swaps += randomedgeswap(G)

5: while numberofcomponents(G) > 1 do
6: c1 ← randomcomponent(G)

7: c2 ← randomcomponent(G)

8: e1 ← randomedge(c1)

9: e2 ← randomedge(c2)

10: G.swapedges(e1, e2)

All the steps of this algorithm are efficient. Constructing the initial graph and
ran- domizing it with double edge swaps takes linear time in the number of edges,
i.e., the sum of degrees

∑
i ki [21]. The connection step, step 3, also admits an

efficient implementation: We precompute a list of components (say with union-
find), and we then update the list every time an edge swap successfully merges
two components. Verifying that a swap connects two components is not too costly,
because we only need to verify that the swap did not disconnect the nodes from their
original components. Altogether, exact sampling of small connected graphs (less
than 200 nodes) with method of Viger and Latapy takes at best 50 times longer than
with our approximate sampling. On larger graphs (e.g. over a couple of thousand
nodes), our sampling heuristic currently requires similar or slightly larger amount
of time as exact sampling, because we have yet to optimize our implementation.
That said both approaches were found to scale linearly with graph size on perfect
trees; we thus expect the reduction in overhead to be worth it in all regimes once
optimized for larger graphs.

The price to pay for this speedup is exact uniformity over ΩN(d). The proofs
of Ref. [23], for example, do not generalize to our method. This is due to the fact
that the swaps we make in step 3 are “unidirectional,” in the sense that they move
us from a space of disconnected graphs towards a space of connected ones, with no
possibility of ever backtracking; classical proof techniques, in contrast, demonstrate
the ergodicity of reversible chains over an ensemble. That said, our heuristic at least
guarantees that (a) the degree sequence is preserved and (b) the graph is connected,
and it finds these graphs rapidly in most cases. Furthermore, as we now show, a
uniformity test and a comparison with the slower (but provably exact) algorithm of
Viger and Latapy suggest that our algorithm samples from the target distribution to
a close approximation.

As a first verification that our heuristic approximately generates graphs from
the correct ensemble, we carry out a simple uniformity test. We consider the short
degree sequence k = (1, 1, 1, 2, 2, 2, 3), and enumerate all the labeled connected
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Fig. 1 Expected correlation matrix e for a real network (Norwegian board of directors [27]),
as calculated empirically using 1000 draws from: (a) the simple CM, (b) the exact connected
microcanonical CM [22], (c) the canonical connected CM [15], and our heuristics. Some features
of the exact connected microcanonical sampling are recovered by our heuristics but not by the
approach of Ref. [15]. Most relevant to our case studies is the weak diagonal, a signature of the
disassortativity (negative degree correlations) of the true connected CM ensemble

Table 1 Frequencies of the isomorphism classes of connected graphs sharing the degree sequence
k = (1, 1, 1, 2, 2, 2, 3), compared against their empirical frequencies computed from a 106 graph
samples

Isomorphism class  Uniform  Viger & Latapy Our heuristic

0.3 0.304 0.321

0.6 0.599 0.609

0.1 0.098 0.070

The calculation takes about 90 s with our non-uniform heuristic, versus hours with the exact sampler

graphs that are compatible with it—60 in this case. We then identify all the
isomorphism classes up to a relabeling—there are three, see Fig. 1—and count
the number of graphs in each class. The frequencies of the isomorphism classes
are reported in Table 1. Since the microcanonical connected CM is a uniform
distribution over the 60 labeled graphs (and not the isomorphism classes), a useful
sampling algorithm should generate graphs with isomorphism classes that closely
follow the true frequencies calculated in Table 1. And indeed, we find empirical
frequencies that are not exactly equal to the true ones, but the deviations are small.

To further validate our heuristic, we carry out a second test where we randomize
the connections of the giant component of a large connected graph. When the
graph is large, there are far too many isomorphism classes to calculate their true
frequencies, let alone evaluate their empirical frequencies to a reasonable degree of
accuracy. Hence, we turn to a different test and analyze the correlations between the
neighborhood of nodes, conditioned on their degrees. As we will see later in Sect. 3,
this correlation structure intervenes in many of the applications of the connected
CM as a null model—it is therefore essential to get it right.
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We show the results in Fig. 1, with matrices e(k, k′) whose entries e(k, k′)
are the expected number of edges between nodes of degree k and k′. We use as
input the degree sequence of a real network of Norwegian directors sitting on
at least one corporate board together [27]. This graph is large, comprising 4475
nodes and 4652 edges, and its degree sequence is non-trivial, with degrees ranging
from 1 to 552. We calculate the matrices using four sampling algorithms: The
classical double-edge swap algorithm that samples from the simple CM (for the
sake of comparison); the algorithm of Viger and Latapy (exact); the algorithm of
Tishby et al. (canonical connected CM); and our heuristic. The results confirm that
the connected constraints change the correlation structure significantly (compare
Fig. 1a, d). They also show that hard constraints on the degree lead to a markedly
different correlation matrix (compare Fig. 1b, c). And finally, they demonstrate that
our heuristic finds correlations close to the exact ones (compare Fig. 1b, d).

3 On the Impact of Being Connected

3.1 Assortativity in Connected Graphs

Degree correlations aim to capture mixing patterns in a network [28]. Generally,
these degree correlations can be captured by “joint-degree measures” such as the
probability e(k, k′) that a random edge joins nodes of degree k′ and k′, a measure of
correlation we have used in Fig. 1. For any random graph with degree distribution
pk , we can expect the degree of a node at the end of a random edge to be distributed
according to qk = kpk/〈k〉 since a node of degree k participates to k times more
edges than a node of degree 1. In a fully random graph with a given degree sequence,
i.e., one drawn from the unconnected canonical CM, we could therefore expect
eCM(k, k′) ∝ qjqk′ , but that would assume that the degrees of neighboring nodes
are uncorrelated. To correct for possible deviations from the CM one can therefore
measure e(k, k′) from real datasets.

Edge matrices like e(k, k′) can be used to parametrize random graph ensembles,
as done in some degree-correlated version of the Configuration Model [10]. In
practice, it is more parsimonious to coarse-grain this information and only specify
a measure of correlation, the assortativity coefficient [28]. For a graph G, we write

rCM(G) = 1

σ 2
q

∑

k,k′
kk′
[
e(k, k′)− qkqk′

]
, (2)

where σ 2
q =

∑
k2qk −

(∑
kqk

)2 is the variance of the distribution qk . Importantly,
the negative term in Eq. (2) corresponds to correlations we would expect in the CM,
meaning that we control for correlations that would emerge naturally given only the
degree sequence of the graph. In other words, we control for our expectations from
the CM.
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In real graphs we typically do not expect r = 0 which would correspond to
a typical graph drawn from the CM. Instead, as a general rule of thumb [28, 29],
it is typically accepted that social graphs tend to display assortative mixing, or
positive degree correlations r > 0, where high degree nodes tend to more connected
than you would expect at random Conversely, technological graphs tend to display
diassortative mixing, or negative degree correlations r < 0, where high degree nodes
connect to low degree nodes more often than expected at random.

Technological and social datasets are also typically collected in very different
ways. As mentioned in our introduction, some data on technological graphs, such
as the structure of the Internet or power grids, tend to be connected per definition.
For example, a power grid with two disconnected components would typically be
considered as two distinct graphs. In other cases, like subsets of the World-Wide
Web, data tends to produce connected graphs because they are often collected by
crawling edges.

Given conventional wisdom on assortative mixing in complex graphs and on their
different expected connectedness across domains, we ask: How does connectedness
affect assortativity? In Fig. 2 we illustrate how connectivity might matter, using two
trees as a simple example. Controlling for the wrong expectation means we might
find a signal where there is none.

To study the interplay between assortativity and connectedness in real graphs, we
calculate a new assortativity coefficient based on the connected CM rather than the
typical CM null model. Because of the linearity of Eq. (2) we can write

rCCM(G) = rCM(G)− 〈rCM(GCCM)〉 (3)

where we are controlling for our expectations using the connected CM (right-hand
side), by measuring the classic assortativity coefficient (first term of left-hand side)
and subtracting deviations between the new and old null models (second term of
right-hand side). The final term is therefore the classic assortativity coefficients
averaged over many graphs drawn from our sampling algorithm for the connected
CM.

Fig. 2 Two simple examples of connected trees with the same degree sequence. The most
assortative this degree sequence be, while remaining connected, is as a stretched star (left graph)
with assortativity coefficient of r = −0.23. The most disassortative this degree sequence can be
is as a star combined with a single chain (right graph), leading to r = −0.50. Without looking
at the graph or degree sequence in detail, one might naturally conclude that both of these graphs
are strongly diassortative. The disassortativity of trees stems from their high number of leaves that
cannot be connected without disconnecting the graph
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Fig. 3 Distribution of the degree correlation, for random graphs drawn from the connected CM,
with degree sequences taken from three real graphs of increasing densities. (a) Phylogenetic tree
of the Measles [30], of mean degree 〈k〉 = 1.99, with 175 nodes and 174 edges. (b) Graphs of
Norwegian directors sitting on at least one board together [27], of mean degree 〈k〉 = 2.08, with
4475 nodes and 4652 edges. (c) Power grid of Poland during the winter [31], of mean degree
〈k〉 = 2.42, with 2383 nodes and 2886 edges. The classic assortativity coefficients are shown as
vertical lines at (a) −0.249, (b) −0.185, and (c) −0.0827; and become, under the connected CM,
(a) −0.013, (b) −0.023 and (c) −0.056

We calculate the distribution of this corrected coefficient for a few real connected
graphs in Fig. 3. As expected, on real trees such as the phylogenetic tree of
the measles virus (Fig. 2a), we find strong disassortativity based on the classic
assortativity coefficient rCM(G) (shown as a vertical line). This disassortativity,
however, is not surprising when we compare it to the distribution of assortativity
found for graphs generated from the correct, connected, null model (histogram). In
sparse social systems with few loops (Fig. 2b), such as a corporate graph of board
directors used in our example of Fig. 1, we similarly remove most of the signal when
using the connected null model even if that graph can still be rejected as not being a
typical instance of the connected CM. Finally, in denser cases such as power grids
(Fig. 2c), we would conclude that the graph structure is disassortative by using either
the CM or connected CM, because the null distribution is centered around r = 0 for
the connected CM (and because the classical assortativity effectively compares the
assortativity of real graphs to a distribution centered on r = 0).

3.2 Community Detection in Connected Graphs

Community detection [32]—and more generally mesoscopic pattern extraction
[33]—refers to a wide variety of methods whose goal is to find structurally similar
groups of nodes in a network, given only the structure of the network as input.
Formally, these methods find assignments of the nodes of G to K communities of
similar nodes, assigning precisely one community σi to each node i = 1, . . . , N .
They are among the most useful methods of network science, because communities
can help us understand networks at the exploratory data analysis stage, act as
the input of other network analysis methods [34], or even help us identify the
fundamental building blocks of networks [35].
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Modularity maximization methods were among the first proposed community
detec- tion algorithms, and have since gained prominence among practitioners
because of their clarity and ease-of-use [32, 36, 37]. These methods use a specific
form of objective functions—modularities Q(σ)—to quantify the quality of parti-
tions. The most general modularity function can be written as [38]

QP (σ) = 1

m

∑

i<j

(
aij − 〈aij 〉P

)
δσiσj

, (4)

where m is the number of edges, where the sum runs over all pairs of nodes, and
where δσiσj

is the Kronecker delta, equal to 1 if σi = σj (i.e., node i and j are
in the same community) and to zero otherwise. The two terms of Eq. (4) denote,
respectively: Whether there is an edge between nodes i and j and the expected
number of edges between the node i and j under the null model P , noted as
〈aij 〉P . According to this equation, a partition is deemed good if there are many
more edges connecting nodes that are inside the same community than what we
would expect to observe by chance, given a null model P for the graph. A specific
modularity maximization algorithm consists of a particular choice of null model P

and of maximizer2 [33]—a search strategy for the space of possible partitions that
converges to the partition with maximal modularity.

The canonical (unconnected) CM is almost always used as the null model P

[36, 37], in part because the expectation 〈aij 〉 is then given by the simple formula

〈aij 〉CM = ki kj

2m
, (5)

where ki is the degree of node i and m = 1
2

∑
i ki is the total number of edges. But,

as we have already argued, this null model is not always the most natural choice
[21]. In fact, it is known that different choices of model will tend to resolve different
types of communities [33, 41], with no obvious optimal choice on all inputs [42].
Futhermore, there are known applications where switching to a model P tailored
to the class of graphs at hand leads more accurate and relevant inference results
[21, 43]. So we ask: How do modularity-based algorithms behave when we choose
the connected ensemble of graphs with fixed degree sequence as our null model?

To answer this question, we need to evaluate the average 〈aij 〉CCM appearing in
Eq. (4), with the connected CM as the null model. Just as in Sect. 3.1, we opt for
a numerical average, computed with the efficient heuristic introduced in Sect. 2. If
there are on average e(k, k′) edges connecting nodes of degrees k and k′, then the
expected number of edges between two nodes i and j of degree ki and kj is given
by

2Many standard optimization methods are capable of fulfilling the role of optimizer: Spectral
embedding [37, 39] and greedy maximization [40] are well-known examples.
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〈aij 〉CCM =
⎧
⎨

⎩

e(ki, kj )/nki
nkj

if i �= j and ki �= kj

e(ki, kj )/nki
(nki

− 1) if i �= j and ki = kj

0 otherwise,
(6)

where nk is the number of nodes of degree k in the graph, and where the second
expression accounts for the fact that there are no self-loops in the ensemble.

With Eq. (6) for 〈aij 〉CCM, we can readily evaluate the connected modularity of
the different partitions of a network, and run optimization algorithms to find the
best one. The number of communities K is not known a priori, so we run a double
optimization3 where we first find the best partition σ ∗(K) for many choices of K ,
and then find the K∗ for which this optimal partition has the largest modularity. The
results of one such experiment are shown in Fig. 4, where we find the communities
of the network of directors (see also Figs. 1 and 3), using the standard modularity
QCM (see Eq. (5)) and the connected modularity QCCM (see Eq. (6)).

We find a few differences between the analysis ran with the unconstrained
and constrained CM as null model. Perhaps most noticeable is the fact that the
optimal connected modularity stays close to its maximum for a much larger range
of K than the standard modularity (Fig. 4a). This suggests that the number of
communities is not as clearly defined once we account for connectivity. Furthermore
the optimal partition σ ∗(K∗) under the connected CM occurs at a slightly larger
number of communities K , which allows the algorithm to (correctly) resolve a few
more communities (see Fig 4b, c). When we actually inspect these best partitions,
however, we find that communities essentially consists of one node of high degree
and its degree one neighbors—regardless of the choice of null model. This is a
consequence of the fact that placing a node of degree one and its neighbor in
the same communities is always good when the networks are near-trees. The two
models do not put the exact same penalty on these connections, but the difference is
not large enough to alter the optimal clustering choice significantly. And as a result,
the communities are qualitatively unchanged when we switch the null model from
the CM to the connected CM (the normalized reduced mutual information (nRMI)
[46] of the optimal partitions is 0.93, while comparing the best partitions of size K∗
yield nRMI = 0.95 (K∗ = 80) and nRMI = 0.98 (K∗ = 106), on a scale of 0–1).

3.3 Robustness of Connected Graphs

Percolation is a simple stochastic process in which edges or nodes are randomly
removed from an existing network. It is an obvious model for the robustness of

3This strategy works thanks to the regularization properties of the modularity: The partition in a
single community (K = 1) has zero modularity due to the negative contributions of the null model,
and so does the partition in K = n communities of 1 node since no two nodes share a community.
It follows that there is an optimum K∗ somewhere in between these two extremes.
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Fig. 4 Outcome of modularity maximization on the network of directors. (a) Modularity of the
best partition in K communities found by using the CM and the connected CM as null models.
We add a moving window average to guide the eye. The optima are identified with vertical lines.
(b–c) Visualization [44] of the optimal partitions when we use as null model (b) the CM, and (c)
the connected CM. The community of a node is indicated by a non-unique combination of node
color and shape (but no two adjacent communities are shown with the same combination). These
partitions are found as follows. For a fixed K , we first embed the nodes of G in R

K , using the
K largest eigenvectors of the modularity matrix B = A − 〈A〉P [39], defined as the difference
between the adjacency matrix A and the average adjacency matrix 〈A〉P under null model P .
We then create many candidate partitions by running agglomerative clustering on the embedded
nodes [45], for various choices of affinity (2 norm and cosine similarity) and linkage strategy. We
finally select the candidate partition that maximizes the modularity as the optimum for that K . The
partitions shown in (b–c) are the ones that maximize the modularity over all K

graphs to random failures, but also useful to study dynamical processes such as
epidemics [47]. While one can certainly simulate percolation on a specific real graph
to study its robustness or its ability to sustain an epidemics, it is often instructive
to also study the percolation process on a series of random graph ensembles,
because this lets us evaluate the impact of different structural properties on the
outcome. Hence for example, an epidemic on a real graph could be first compared
to the outcome of the percolation on Erdős–Rényi graphs with the same density, to
evaluate the impact of density alone; then compared to the outcome of percolation
on graphs drawn from the CM, to evaluate the impact of the contact distribution;
and so on for higher order models.

Enforcing connectedness can, again, make a big difference on the outcome of
percolation. To show this, we consider bond percolation where a fraction p ∈ [0, 1]
of edges are randomly removed from a network instance. We compute the size of
the largest connected component (LCC) after this removal has taken place, and
investigate its dependency on p. The original connectedness of a real system is
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Fig. 5 Percolation on the CM and connected CM ensembles with degree sequences taken from
real systems, compared with percolation on these systems. The size of the largest connected
component (LLC) is shown as a function of the fraction of removed edges p

critical to account for, since the size of the LCC after some edges are removed is
obviously bounded by the size of the LCC before this removal processes.

In Fig. 5, we show the outcome of bond percolation for two graphs studied in
previous case studies: The social network of board directors sitting on common
boards of Norwegian public limited companies, and the structure of a Polish power
grid. In the first, a percolation model can be used to study pathways for information
flows; and in the second, a naive model of robustness to failing power lines. We find
that the connected CM delays the onset of the connected phase (i.e. the LCC starts
growing at higher occupation probabilities) and forces fixation to full connectivity
as the occupation probability goes to one. The delayed onset of the connected
phase is most likely a consequence of the disassortativity of connected treelike
graphs. The full connectivity at high occupation probability is a trivial consequence
of the ensembles containing only connected graphs. Perhaps more interestingly,
the connected CM also captures the convex relationship between the size of the
LCC and the occupation probability at the onset of connectedness. This convex
relationship is often a consequence of core–peri- phery structure, both in dense
and sparse graphs, as shown in Refs. [11, 12]. Our results here show that the
degree sequence and the connectedness can also explain this feature, and more
parsimoniously so.

4 Discussion

In this paper, we have proposed an efficient heuristic that can generate samples from
the connected configuration model with hard degree constraints. We have shown
that this heuristic is fast on small graphs, and that it always returns a graph as long
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as the input degree sequence is graphical. By way of three case studies, we have
then demonstrated how this algorithm can be used to analyze real systems where
connectedness is key. In doing so, we have found, for example, that while graphs
with a low density can seem disassortative at first glance, their disassortativity can
be explained by the fact that they have to be connected in the first place. In the same
manner, we have also found that connectivity can alter the communities found by
modularity maximization algorithms or the interpretation of a percolation process.

Throughout the second part of this paper, we have found time and time again that
connectedness constraints matter the most when the density of the modeled system
is low. And this was, in a sense, expected. After all, two classical results from graph
theory show that a high average degree automatically implies connectedness for a
large portion of the nodes of a completely random graph [2] as well as for random
graphs with fixed degree sequence [5]. Or in other words: Dense random graphs
are already connected, whether we ask them to be or not. It follows that imposing
connectedness is most important in the regime of sparse graphs. When modeling a
sparse system, therefore, we should take special care and ask ourselves: Was this
graph expected to be connected? Is there a sampling or construction mechanism
that forces us to observe this graph in one piece? These questions help guide our
choice of null model. And as we have shown, this choice can certainly change our
conclusions—so beware.
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